Borwein の公式
Borwein 兄弟は AGM 系の公式に類似した公式として, n 次収束する公式が任意の n について存在する証明をし,そのいくつかについて具体的な方法を示している. 以下でそのいくつかを紹介する.
2次収束の公式 [FB05]
\[
x_0 = \sqrt{2},
\pi_0 = 2 + \sqrt{2},
y_1 = 2^{1/4}
\]
\[
\left\{ \begin{eqnarray}
x_{n+1} &=& \dfrac{1}{2} \left( \sqrt{x_n} + \dfrac{1}{\sqrt{x_n}} \right) &
{\rm for\ }n\geq 0\\
y_{n+1} &=& \dfrac{y_n\sqrt{x_n}+1/\sqrt{x_n}}{y_n+1} &
{\rm for\ }n\geq 1\\
\pi_n &=& \pi_{n-1} \dfrac{x_n+1}{y_n+1} & {\rm for\ }n \geq 1
\end{eqnarray} \right.
\]
\[
{\rm 収束:} |\pi_n-\pi| \lt 10^{-2^{n+1}}
\]
3次収束の公式 [FT09]
\[
a_0 = \frac{1}{3},
s_0 = \frac{\sqrt{3}-1}{2}
\]
\[
\left\{ \begin{eqnarray}
r_{n+1} &=& \dfrac{3}{1+2(1-s_n^3)^{1/3}}\\
s_{n+1} &=& \dfrac{r_{n+1}-1}{2}\\
a_{n+1} &=& r_{n+1}^2 a_n - 3^n(r_{n+1}^2-1)
\end{eqnarray} \right.
\]
\[
\frac{1}{a_n} \rightarrow \pi\quad (n\rightarrow\infty)
\]
4次収束の公式 [FT09]
\[
a_0 = 6 - 4\sqrt{2},
y_0 = \sqrt{2} - 1
\]
\[
\left\{ \begin{eqnarray}
y_{n+1} &=& \frac{1-(1-y_n^4)^{1/4}}{1+(1-y_n^4)^{1/4}}\\
a_{n+1} &=& a_n(1+y_{n+1})^4 - 2^{2n+3}y_{n+1}(1+y_{n+1}+y_{n+1}^2)
\end{eqnarray}\right.
\]
\[
{\rm 収束: }\ |a_n - 1/\pi| \lt 16\cdot4^n\cdot2e^{-4^n\cdot2\pi}
\]
5次収束の公式 [FB02]
\[
s_0 = 5(\sqrt{5} - 2),
a_0 = 1/2
\]
\[
\left\{ \begin{eqnarray}
x &=& \frac{5}{s_n} - 1\\
y &=& (x-1)^2 + 7\\
z &=& \left(\frac{x}{2}\left(y + \sqrt{y^2-4x^3}\right)\right)^{1/5}\\
s_{n+1} &=& \frac{25}{s_n(z+x/z+1)^2}\\
a_{n+1} &=& s_n^2 a_n - 5^n \left(\frac{s_n^2-5}{2} + \sqrt{s_n(s_n^2-2s_n+5)} \right)
\end{eqnarray}\right.
\]
\[
{\rm 収束: }\ |a_n - 1/\pi| \lt 16\cdot 5^n e^{-\pi5^n}
\]
9次収束の公式 [FT09]
\[
a_0 = 1/3,
r_0 = (\sqrt{3}-1)/2,
s_0 = (1-r_0^3)^{1/3}
\]
\[
\left\{ \begin{eqnarray}
t &=& 1 + 2r_n\\
u &=& (9r_n(1 + r_n + r_n^2))^{1/3}\\
y &=& t^2 + tu + u^2\\
m &=& \dfrac{27(1+s_n+s_n^2)}{v}\\
a_{n+1} &=& ma_n + 3^{2n-1}(1-m)\\
s_{n+1} &=& \dfrac{(1-r_n)^3}{(t+2u)v}\\
r_{n+1} &=& (1-s_n^3)^{1/3}
\end{eqnarray}\right.
\]
\[
\frac{1}{a_n} \rightarrow \pi \quad (n\rightarrow \infty)
\]